arXiv:2502.15382v2 [cs.PL] 15 Apr 2025

Verified Parameterized Choreographies
Technical Report

Robert Rubbens® Petra van den Bos
Marieke Huisman
Formal Methods and Tools, University of Twente, Enschede, The Netherlands

{r.b.rubbens,p.vandenbos,m.huisman}@utwente.nl

Abstract

This technical report contains the full set of definitions and projection
rules of the paper “Verified Parameterized Choreographies” by Rubbens et
al. [4]. It also supplements the artefact [3].

1 Complete formal syntax

The figure below is the formal syntax of PVL programs supported by VeyMont,
including the complete OOP fragment of PVL.

Core PVL The syntax of PVL is shown in Fig. 1, of which the left is the syn-
tax for core OOP PVL. PVL has classes, methods, fields, and supports several
built-in types, such as integers (int), booleans, and sequences (e.g. seq<int>).
It supports standard statements such as while, if and variable assignment,
and standard expressions such as boolean logic and arithmetic. It also supports
verification primitives such as contracts with pre- and postconditions, and as-
sertions and ownership through permission annotations. The main primitive for
concurrency in PVL is the par block. When a main thread reaches a par block,
N subthreads are spawned to execute the body of the par block in parallel. The
main thread waits until all subthreads are finished, and then continues with the
remainder of the program.

We want to highlight how expressions are defined in Fig. 1. Pure expressions
FE only depend on local variables and immutable value constructors, such as se-
quences and sets. Heap-dependent expressions H are a superset of E, that can
also refer to fields of objects. Resource expressions (R) are a superset of H, and
include permissions using the Perm keyword, as well as the separating conjunc-
tion operator ** to compose resources. These different kinds of expressions give
rise to variations of several other nodes: pure contracts (K'), contracts that only
inspect the heap and not modify it (K) and contracts that require and return
resources (Kg), pure functions (f) and functions that read the heap (fx).

Choreography DSL in PVL On the right of Fig. 1 is the choreographic
fragment of PVL. A choreography has zero or more parameters, and defines
one or more endpoint or endpoint families. Endpoint e are singular endpoints,
defined to have a name and instructions on how it should be instantiated with
a given constructor. Endpoint families extend this notion with an extra size
parameter that indicates the size of the endpoint family at runtime. Where a
singular endpoint is represented at run-time with an instance of the given class C,
an endpoint family is represented with an immutable sequence of such instances.
Finally, a choreography also contains a run declaration, which is the main body
of the choreography and contains a sequence of choreographic statements.

http://arxiv.org/abs/2502.15382v2
https://orcid.org/0000-0002-5638-5945
https://orcid.org/0000-0002-9212-1525
https://orcid.org/0000-0003-4467-072X

TR: Verified Parameterized Choreographies Rubbens et al.

x,y,z == field, v, u,w ::= variable, m ::= method,

f == function, C ::=class, P ::= predicate,

T ::= int | boolean | seq<T™> | C | ... e,a,b :=endpoint F,G ::= endpoint family,
K z=requires E; ensures E; chor ::= K choreography(T v){ Dcnor }
Ky = ﬂith R H Kgr =K with R, R Denor = endpoint e = C (F):
prog ::= decl L . | endpoint F[v :=0 .. Hl = C(E);
decl ::= class C { D } | resource P(Tv) = E; | K run { Senor
| K pure T [(Tv) = E; | Ky pure T fu(T) =H; 5, e i (Honor) Sehor Sehor | assert Repors
| chor | Loop_invariant Repor; while (Henor) Schor
Dys = Tax; | Kp Tm(T v) Sy | endpoint a: Sep
E:=v|r|F|E+E|E&E|E.f(E)]|.. | channel_invariant Repen; communicate a: H ->a: H;
H ::= E extended with: Ey.x | Ej,. f4(Ey) | FLE,] | this Sep n= H.m(H) | H := H;
R:=H |Perm(H.x, H) | R ** R| P(H) Hcpor := (\endpoint a; H) | Hepor && Hepor
| H ==> R| QP Rehor := (\endpoint a; R) | Rehor && Repor | (\chor H)
Sy, = assert H; | H=H; | H.m(H) Rehan = R extended with: \msg | \sender | \receiver
| inhale R; |exhale R; |if (H) Sy S rpu=e|FIE] a,Bu=r|Flv:=E.. E]

| loop_invariant R; while (H) S, | ...
| Kppar (Tv = H .. H) Sy,

Figure 1: PVL syntax. Left: OOP fragment, right: choreographic fragment.

There are a two ways to refer to endpoints. First, to refer to singular end-
points there is the notation r, which refers to either an endpoint e or a member of
an endpoint family F' at index E. Second, there is the notation « for endpoint
targets in general, which extends singular endpoints with ranges of endpoint
families. This can be used to state that e.g. a statement must be executed by a
subrange of an endpoint family.

The syntax for choreographic statements S, partially overlaps with regular
PVL statements S,,,, but they cannot be used interchangeably. Specifically be-
cause e.g. the choreographic if requires its condition to be one or more endpoint
expressions (\endpoint «; H) combined with &&, whereas the regular PVL if
requires a plain heap expression H. The semantics is similar to the semantics of
each statement in PVL, except that each endpoint only executes those staments
that are relevant to the endpoint. For example, the choreographic statement
endpoint a: e.x := 3 will be executed by a, but skipped by b. Composite
statements are transparent with regards to this; if an endpoint does not occur
within a composite choreographic statement, it skips it.

A communication statement is parameterized when the « notation is used
to denote a range, such as F'[v := 0 .. N]. When both alphas of the com-
municate indicate a singular endpoint, it is just a regular non-parameterized
communicate (though even in the non-parameterized communicate, a member
of an endpoint family might participate through endpoint family indexing, such
as F'[5]).

The user can also declare a channel invariant on a communicate statement,
which specifies an invariant over values sent over that channel. This invariant
must be proven over the values sent, and may be assumed over the values re-
ceived. Within this invariant, the keywords \sender, \receiver and \msg must
be used to refer symbolically to the respective concepts.

Choreographic expressions are adapted to allow the same projectability that

TR: Verified Parameterized Choreographies Rubbens et al.

SORT
sort(e) =e
sort(F'[i]) =F
SOI’t(F [i := Eiow -- Ehigh]) =F

Figure 2: Definition of sort to approximate inequality between instances of «

is natural for statements. The primitive here is the endpoint expression, written
as (\endpoint «; H), and also for R. This expression indicates that H is only
relevant for the endpoint target a, and must be ignored by other endpoints.
This means that any endpoint covered by « will evaluate the expression, while
endpoints not covered by a will simply continue as if the expression evaluated
to true. This is sound, because endpoint expressions may only occur positively,
and because VeyMont checks branch unanimity [1].

The \chor expression is used to indicate that an expression should only be
included in the choreographic projection, and that is should not be included in
the endpoint projection. In addition, within a \chor expression, permissions
from all endpoints can freely be mixed. In spirit, \chor is similar to assume,
in that it is used to “debug” non-verifying programs, and that any use of \chor
should include an explanation of why it is needed, or otherwise removed. For
more information on endpoint expressions, we refer the reader to [2].

2 Auxiliary definitions

Figure 2 shows the auxiliary definition sort. The function sort approximates
inequalities on «. This is useful for checking if it is possible for two a notations
to be equal. For example, if sort(F'[i]) # sort(G[4]), then F'[:] and G[j] are
also distinct.

We define functions pre(m, F) and post(m, F) axiomatically to return the
pre-/postcondition of m. In addition, they replace any occurrence of this in
the return value with E. If these functions are given a class C, they return the
pre-/postcondition of the constructor of the class.

3 Choreographic Projection Rules

We will now discuss the transformation rules for the choreographic projection.

The transformation rules distinguish between 1. singular endpoints using
e, 2. singular or indexed endpoint families using r, and 3. endpoints or endpoint
family ranges using a. E.g. rule CPEXPR applies only to singular endpoints,
such that another rule (in this case rule CPEXPRRANGE) is necessary to handle
the parameterized case. In contrast, e.g. rule CPEXPRSKIP uses «, and hence
works for both endpoint family ranges as well as singular endpoints.

Rule CPEXPR enables confined memory mode [2] to make sure F is evaluated
using only memory of r.

Rule CPEXPRSKIP skips an expression by transforming it to true if it is not
relevant for the current target for confinement. This is safe, because the side
condition sort(«) # sort(r) guarantees that the expression is not relevant to r.

Rule CPASSIGN uses confined memory mode to ensure the assignment is ex-
ecuted on the memory of r. For this rule there is no parameterized version. This
is because it is difficult to automatically infer the footprint of the expressions
Ej,. and E, in a parameterized context. If required, the user can work around
this by defining a method on an endpoint that only writes to a field, and call
this using the rule for parameterized method invocation, discussed later.

TR: Verified Parameterized Choreographies Rubbens et al.

CprPEXPR C{I[D(E\Xeill):iS;)I;Ifnt a; E)]. — true CPASSIGN
ﬂ(\endPC’lnt ;5 E)]} = {IE]}T if SOI’t(Oé) 75 SOI’t(’r‘) {IT: Hye := Hv;]} = {IHloc]}r = {IH’U]}T;
Cple CPWHILE

{ t unanimous(H); {loop_invariant Rj,,; while (Hcong) S| =
(4 (D) Sese Sewsne] = ?;S?EH]}) s u]} {[é 13 loop_invariant unanimous(Rn,) && {Rinvl;
true false while ({Heonal)) {S]

CrComMm
channel_invariant R;(\msg, \sender, \receiver);
communicate r: Hpyeg -> D1 Hges

CPMETHODCALL
) {Tvwv-= {[H]} ;
d tr: H. D ={H]. . ; msg
{endpoint r mQO;l={H]}, . {mO},; exhale {Ri(v, 1, p)], ;
inhale {Ri(v, 7, p)},;
{Hasel, = v5 ¥
CrEXPRRANGE CprEXPRINDEX
{(\endpoint F[i := E; .. Epl; ED|}= {(\endpoint F[j := E; .. Epl; EGD gy =
(\forall int i = E; .. Eu; {Elp) Ep <= && i < Ep ==> {E(i)]} pry
CPMETHODCALLRANGE
{endpoint Fli := E; .. Epl: F[L1.mQ;] =
par (int 1 = E; .. E})
requires {pre(m, F i)} pps
ensures {post(m, F[il)]} prs
{ {{endpoint F[il: F[Ll.mQO;]} }
CpCoOMMRANGE
channel_invariant R;(\msg,\sender,\receiver); _
communicate F'[i := F; .. Epl: FL1.f -> GLd®G#)]: GILd(i)].g; -
assert (\forall int i, j = E; .. FEj; d(i) == d(G) ==> i == j);
par (int i = E; .. Ep)

context {Perm(F[i]l.f, €] pp ** {(Perm(G[d(i)].g, 1)]}G[d(i)];
requires {R;(F[il.f, FLil, GLd(i)]1)] prqs
ensures {R;(GLd(i)].g, F[il, GLd(D)])}graen s
{Twv={FU. flru;
exhale {R;(v, Fli], GUd(i)1)]} g5
inhale {R;(v, F'[d, GLd()])}grauy s
(G . gbgraan = vs >

Figure 3: All choreographic projection rules

The rules CPIF and CPWHILE forward the choreographic projection to their
subparts, while also adding deadlock freedom checks [1]. As there is no endpoint
context on these statements, no confinement is necessary.

Rule CPMETHODCALL evaluates the target of the method in confined mem-
ory mode. On then target, it calls a version of the method m adapted to the
stratified permissions memory model [2].

Rule CpCoOMM encodes a communication from endpoint r to endpoint p.
First, the message value is computed, confined to the memory of . Then, the
channel invariant is removed from the state of r using the exhale statement.
Note that the channel may contain the placeholder expressions \msg, \sender,
\receiver, in this case referring to the value of H,,s4, r and p respectively. The
projection instantiates these placeholders with their concrete values by passing

TR: Verified Parameterized Choreographies Rubbens et al.

v, r and p as arguments to the channel invariant R;. Then, the invariant is
added to the state of p, after which finally the value is written to the destination
location.

Rule CPEXPRRANGE evaluates an expression for all endpoints in an endpoint
family symbolically by replacing the \endpoint keyword with \forall. This is
sound, as \endpoint expressions can only occur in a positive positions: H.por
is essentially a list of \endpoint expressions combined with &&. This is at the
logical level equivalent to using \forall.

Rule CPEXPRINDEX shows how to project an endpoint expression with a
range in confined mode: an implication is prepended to the expression E that
ensures F is only evaluated if the confinement target index j is within the bounds
of the endpoint expression range, Ejo, and Ejp;qp,. Effectively, we intersect the
range specified by the endpoint expression with the confinement target. This
rule is necessary when using the confined memory mode for branch unanimity
(i.e. the unanimous function).

Rule CPMETHODCALLRANGE transforms a method call on a range of end-
points into a par block that executes the method calls indepently and in parallel.
This is essential: if the par block can be proven correct, this means the method
calls can safely be executed independly and in parallel, which means splitting
this method call up using the endpoint projection is safe. The syntax for the
object on which the method is called is restricted: instead of a general expression
H we allow only an indexed family. This ensures the required annotations for the
par block can be automatically generated, as it keeps the footprint predictable
and exact.

Rule CPCOMMRANGE does something similar as rule CPMETHODCALLRANGE,
except for two things. First, the injectivity is checked by adding an assert
and a quantifier encoding the injectivity property over the expression d. Sec-
ond, by modelling the actual message exchange within the par block. This
message exchange works as follows: 1. evaluate the message in the context of
F'[i], 2. remove the channel invariant from the state of F'[i], 3. add the state to
G[d(i)], 4. assign the message to the destination location, allowing only memory
to be used of the receiving party. Similar to rule CPMETHODCALLRANGE, if
this par block can be verified, it is safe to split this block across endpoints using
the endpoint projection. For this rule, the allowed syntaxes for the message
and destination are similarly restricted as CPMETHODCALLRANGE to allow for
automatic annotation generation.

4 Endpoint Projection Rules

Rules EPAssieN, EPEXPR, EPAND, EPIF, EPWHILE and their *SKIP versions
should be self explanatory: they preserve the meaning of the choreographic
statement if it is related to the current projection target, and otherwise replace
it with the empty block statement (resp. true for expressions).

Rule EPCoMM shows that each communication statement is processed twice:
once in send mode and once in receive mode, passed as an argument through the
superscript position. The sending part is processed first to ensure the projected
program cannot get stuck. Rule EPCOMMSKIP shows what happens when the
projection target is neither in the sending or the receiving position: it is replaced
with the empty block statement. The sort function is used here to avoid having
to add duplicate cases for both singular endpoints e as well as endpoint family
indices such as F'[¢].

Rules EPSEND and EPRECEIVE shows that sends and receives are encoded
with resp. writeValue and readValue method calls on a channel. The specific
channel is retrieved from a table that is pre-generated similar to how this is done
for the choreographic projection. This is indicated with the [L], notation.

Rule EPEXPRINDEX shows how to transform an endpoint expression when

TR: Verified Parameterized Choreographies Rubbens et al.

EPSEND
EPASSIGN EPASSIGNSKIP [L: communicate a: Hpgg -> b: Hdst;ﬂze"d:
[[61 Hye := Hv;]]e = Hioe = Hy; [[62 Hye := Hv;]]r ={2 [[L]]a.writeValue(Hmsg) with {
sender = a; receiver = b; };
EpComMm
EPRECEIVE) L: channel_invariant R, ;
[L: communicate a: Hpsg -> b: Hgg; Zacewe = |[communicate a: Hpysy -> Bt Haests HT =

Hgst = [L],.readValue() with {
sender = a; receiver = b; };

send |

r b
receive |

I, ;

[L: communicate a: Hpeg -> Bt Hasts |
[L: communicate «: Hysg -> B Hgsts

EpCoMMSKIP ErEXPR EpPEXPRSKIP
[L: communicate a: Hpygg -> B: Hgws], =1} [(\endpoint ¢; E)], = E [(\endpoint «; E)], = true
if sort(«), sort(/3), sort(r) pairwise distinct P ’ e if sort(«v) # sort(r)

EpPEXPRINDEX EPRANGE
[(\endpoint F[E;1; E)]pyy =1 == E; ==> E [(\endpoint F[j := E; .. Epl; Ed|py, =E <=1 && i < E, ==> E
ErPAND EpCHOR ErIr
[Ey && Es], =[Ei], && [E-], [(\chor E)], = true [if (H) Strue Srasel, = if ([H],) [Struel, [Sraisel,
EPINDEXSEND
EPWHILE [L: communicate F[E;1: Hpsg > r: Hysts ;fg']i =
[loop_invariant R;; while (H) 5], = if (@ == E;) {
loop_invariant [R;],; while ([H],) [S], [L] piiy -writeValue ([Hysg]) with {
sender = F'[i]; receiver = r; }; }
EPINDEXRECEIVE . EPRANGESEND
[L: communicate r: Hysy -> FLE1: Haslpry = [L: communicate F[j: E .. Epl.f -> GLd(j)].g]irs =
if (@ == E;) { if (B <=4 & i < Ep) {
[Histlprg = [L]Friy -readValue) with { [L] g L] writeValue (F (1. f) with {
sender = r; receiver = F[i]; }; } sender = F'[i]; receiver = G[d(i)]; }; }
EPRANGERECEIVE .
[L: communicate F[j: E; .. Epl.f -> GU(y)].g9la" =

if (B <= d7'(i) & d7'(i) < Ep) {
Glil.g = [L]gpy [d ' (i)] .readValue) with {
sender = F[d '(i)]; receiver = G[il; }; }

Figure 4: All endpoint projection rules

it concerns an indexed endpoint family, and when the current projection target
is also an indexed endpoint family. In this case, the expression F is encoded in
such a way that it is only evaluated if the indices match of the two endpoint
families.

For rule EPRANGE, this is similar, except that the current projection target
index now has to be in a range [Ep,).

Rule EPCHOR always drops the expression F, as this annotation indicates
the expression should only be included in the choreographic projection.

Rules EPINDEXSEND, EPINDEXRECEIVE, EPRANGESEND and EPRANGERECEIVE
apply the same trick as EPEXPRINDEX, they check if the current projection tar-
get index falls in the range specified by the statement.

For rule EPRANGERECEIVE there is an additional complication: the inverse
of the expression d needs to be computed at run-time to determine the sending
endpoint index. While injectivity of this expression is checked using the chore-

TR: Verified Parameterized Choreographies Rubbens et al.

ographic projection, this does not result in the actual expression d—'; VeyMont
reasons symbolically about it during the choreographic projection, for the pur-
poses of verification. Instead, the endpoint projection uses pattern matching to
ensure d is in a form that is actually invertible. For example, the expression
i+ 1 can be pattern matched to find that the inverted form is ¢ — 1.

TR: Verified Parameterized Choreographies Rubbens et al.

References

[1] Petra van den Bos and Sung-Shik Jongmans. “VeyMont: Parallelising Veri-
fied Programs Instead of Verifying Parallel Programs”. In: Formal Methods
- 25th International Symposium, FM 2023, Libeck, Germany, March 6-10,
2023, Proceedings. Ed. by Marsha Chechik, Joost-Pieter Katoen, and Mar-
tin Leucker. Vol. 14000. Lecture Notes in Computer Science. Springer, 2023,
pp. 321-339. por: 10.1007/978-3-031-27481-7 _19.

[2] Robert Rubbens, Petra van den Bos, and Marieke Huisman. “VeyMont:
Choreography-Based Generation of Correct Concurrent Programs with Shared
Memory”. In: Integrated Formal Methods. Ed. by Nikolai Kosmatov and
Laura Kovacs. Cham: Springer Nature Switzerland, 2025, pp. 217-236. DOI:
10.1007/978-3-031-76554-4 12.

[3] Robert Rubbens, Petra Van den Bos, and Marieke Huisman. Artefact of:
Verified Parameterized Choreographies. DOI: 10.5281/zenodo.14900264.

[4] Robert Rubbens, Petra Van den bos, and Marieke Huisman. Verified Pa-
rameterized Choreographies. Accepted at COORDINATION 2025.

https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1007/978-3-031-76554-4_12
https://doi.org/10.5281/zenodo.14900264

	Complete formal syntax
	Auxiliary definitions
	Choreographic Projection Rules
	Endpoint Projection Rules

